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Rigidity phase transition in granular packings
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We numerically model two-dimensional systems of granular aggregates confined between two rough walls
and demonstrate that at a critical grain volume fractigran abrupt rigidity transition occurs. The transition
has first-order characteristics, although the elastic constants undergo a second-order transition. Densely packed
grains, with a volume fractiom> v, display an elastic-plastic rheology. Loose packings, withv., display
gaslike characteristics. It is shown that when the volume fraction is allowed to change (Epelying a
constant normal stress to the wallg evolves spontaneously tg, under a wide range of boundary stress
values, demonstrating that the phase boundary is an attractive critical[ Sth63-651X99)01911-X]

PACS numbgs): 45.70.Ht, 05.65tb

I INTRODUCTION Fij () =[Kn(Ri + Ry —rij) —ym;;(F;-A)]A

Granular media are fundamental, yet not well understood, +{min[ksAs, u(F-A) s, @
complex systems with wide ranging applications to techno—Where A= (i %Fi-9)/r5 . 8=(ry-9,—ri;-R)/r;;, are the
logical and natural systems. In recent years there has be

h K lar d . ith hasi h it vectors in the normal and tangential directions respec-
much work-on granuiar dynamics, with émphasis on OWtively. K, ks are the normal and shear elastic constams,

behavior of grain aggregates may resemble solids, liquids, 9K the harmonic mean of the two grain massesandm; , y

ghasels(e.gl., Ref.k[lgj). Alréaagy fReynoId_T n 1;383'52] r;](_)lte((jj is a damping coefficient that ensures inelasticity of the inter-
t atk_ooseypac ﬁ sands lgdormr:aa3|yash uids while der.lsgction,,u is the surface friction coefficient, andls is the
pﬁlc ![ngstr((ejsst S eatr ?S io' SkT f two p ases arehtra ]'ct'ogﬁear displacement since the initial contact of two grains.
f‘ y Irea € ksotlapara} ey by dmel |c—ga|s ap?troac €S leorce is integrated through time to calculate grain position,
00S€ly packe 9@”53‘5] and € astop astl_(ﬁo en using velocity and rotation, using a Verlet algorithi7]. Energy
_assomated p_Ia_sUcHﬁﬁ]) theories for dense soils, but the I_|m- loss is governed by a normal restitution coefficieay
its on the validity of each of these end-member models is not” = 2 12
understood. The very different behavior of low and high den-_ eXP(~Neof2), Where te=m(Kn/m;; — y/4) s the
sity granula'r systems has been seen in both experirfieis collision time, and by fr|ct|ona}l work which depends (_)n_the
and simulation$9] of sheared granular material which, have amount of slip between grain surfaces and the frictional
. . S . shear forceuF,. Distance is measured in units of average
shown a sharp increase in stresses as the solid fraction of the . - ] o
system is increased beyond a critical limit. However, solid-disk diameterxo=2R, time is scaled by the undissipated
like and gaslike regions often coexist within the same flow-€lastic_wave travel time across this distance scaje
ing system[10], particularly where boundary layers form =VMm/k,, velocity is scaled by the elastic wave speeg
near walls(e.g., Refs[11, 12)), or where gravitational forces =Xo/to, and stress byo=Kk,/Xo. In simulations presented
are important{13,14. This coexistence of two differently herek,=1, ke=0.5 andm,=(R;/R)? (so that grains of av-
behaving phases makes it necessary to understand the naterage radius have a mass of. The systems are highly
of the transition, and the phase space of granular materialsamped, withy=1, corresponding to a normal restitution
In this paper we numerically investigate the transition be-coefficient of about 0.3.
tween solidlike and gaslike behavior in two-dimensional In this paper we discuss three related sets of simulations.
granular aggregates, both in static packings and under shedte first set examines the general characteristics of static
We find that the phase transition between gaslike and solidgranular aggregates after compaction between two parallel
like behavior is marked by temporal and/or spatial coexisthorizontal plates. The second and third sets of simulations
ence of the two phases, and that the granular system is dbok at the behavior of the same confined aggregates during
tracted by the phase boundary. shear using two different boundary conditions: constant dis-
We numerically model grain aggregates using a version ofance between shearing walls, termed constant volume
the popular “discrete element method’15] which treats boundary condition§CVBCs), and constant normal stress
grains as inelastic disks with rotational and translational deapplied to the wall, termed constant force boundary condi-
grees of freedom, and has the capability of simulating bothions (CFBC9. The simulations included no gravitational
elastoplastic(e.g., Ref.[16]) and gaslike(e.g., Ref.[14])  forces, and were performed in square systems witlisks.
rheology. In our model two grains of radil® andR; un-  The top and bottom boundaries of the box were composed of
dergo an inelastic interaction when the distance separatingrains glued together to form rigid rough walls of length
themr;; is less than the sum of their radii. During the inter- (Fig. 1). The system was periodic in the horizontal direction.
action theith grain experiences a contact force that has botlPolydispersivity was introduced to discourage ordering ef-
shear and normal components: fects: grain radii were randomly drawn from a Gaussian dis-
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FIG. 1. Representative instantaneous grain stresses and configu
rations during shegherev=10 3v,), in a CVBC, 24X 24 system,
with ©=0.5, at times (;) and {,). A line is drawn through
stressed contacts. Line thickness is proportional to normal stress or
the contact, and is scaled to the largest value in the frame. The
system shown here has=0.80~ v, and thus exhibits “solidlike”
and “gaslike” behaviors intermittently during shearing: At), it
is “jammed” with system-spanning stress chains. At tintg) ( the

system is “loose,” with only local stress clusters. Systems with FIG. 2. Results from CVBC simulations of static 222 and
>y, always look similar to the snapshot inl(), while those with 24X 24 grain packings as a function of solid fractionfor smooth,
v<w. always look similar to {2). ©=0, and frictional, »=0.5, grains(a) Z, average coordination

number per interior grainb) N/o, scaled normal stress exerted
on horizontal walls(c) G/, scaled shear modulus of the aggre-
gate. Solid curves are theoretical predictions, as explained in the

tribution that peaks aR, with a standard deviation R, ,

clipped at 0.2R and 2.(R. The systems were initiated as tall fex
loosely packed boxes, which were compacted vertically by
normal stresses to a predetermined helghitfter compac-  zero for v<<v.. At v the coordination number abruptly
tion the top and bottom walls were allowed to move freely injumps indicating a first-order phase transition. AbayeZ
the horizontal direction to relax shear forces. Using CVBCsincreases as an empirical power law,=Z;,+b,(v
unrelaxed normal forces were maintained on the walls, since-v¢,)“#, where the subscript denotes fits to simulations
we did not allow the walls to move vertically. Global rear- with different friction values. Power-law fitgn solid curve$
rangements during compaction and relaxation ensufle-a yield Z.,=3.2+-0.5, by=5.6+0.5, v,=0.83£0.01, aq
cal) minimal energy configuration, as would occur during =0.48+0.1 and Z.,5=1.7+0.5, by=5.8+0.5, v, 5=0.8

natural compaction. +0.01, ¢g5s=0.36+0.1, for simulations performed witja
=0 andu=0.5, respectively. Critical behavior with values
Il. TWO-DIMENSIONAL GRAIN PACKINGS Of VCOZO.SZi 002 were preViOUS|y Obtained fOI‘ hard friC'

tionless disks[19], and viscoelastic 2D bubblg0] for

After compaction and relaxation we measured propertiegnonodispersed and polydispersed systems, demonstrating
of static configurationgby static we mean velocities have that v, is fairly independent of the disk size distribution, and
decayed to 10%v, or smallej at different prescribed densi- the interaction law in the absence of friction. This value of
ties, or solid fractionspy=3!_,7R%/12, ranging between veo=0.82+0.02 was shown to mark the upper limit of com-
0.75 to 0.96. These two-dimension{@D) solid fractions can pacity of disordered packings of smooth hard monosized and
be mapped to 3D volume fractions of 0.49 to 0.71, using golysized diskg[19]; for v> 1y, there appears long-range
relationship between packings of circles and spheneg ( order in disk positions. The difference k., v., anda be-
=4v§’D2/3771’2 [18]). For each value of the solid fraction, tween frictional and smooth grains occurs because frictional
simulations were performed for two different values of thegrains tend to “stick,” and thus cannot achieve the lower
friction coefficient (u=0.0 and x=0.5) and system size energy configuration of smooth disks. The transition density
(12x12 and 24 24). Simulations performed at the same for frictional grains corresponds to a 3D volume fraction of
conditions with different random grain assemblages pro0.54. Experiment§8] confirm that immense stiffening of
duced very similar results. rapidly shearing frictional grain aggregates occursvat

Figure 2 presents three measured parameters plotted as<d.54.
function of solid fraction:(a) the number of grains touching The fact thatN and Z [Figs. da), 2(b)] are zero forv
(i.e., exerting a force gna grain, averaged over the interior <wv,, indicates that grains can rearrange so that they are not
of the box, termed the coordination numizer(b) the normal  touching, a state with no stored elastic energy. In systems
stresgnormal force per unit lengihiN operating on the upper that are denser than,, packing constraints lead to contacts
and lower confining walls, ant) the system’s shear modu- between grains so that there is residual elastic potential en-
lus G. All measurements show an abrupt change in behavioergy. The elastic repulsion forces at these contacts exert nor-
at a critical volume fraction/., which depends on the coef- mal stresses on the walls which folloM~Z(v— v;) (shown
ficient of friction prescribed between the grains, but not onin solid lines. This is physically expected because the nor-
the system size. The coordination number is approximatelynal stress must be proportional to the number of elastic con-
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tacts per disk, and to the compression of these contacts. Thi 40 »
form is a slightly modifiedto account for the phase transi- IR
tion) form of predictions from standard models of densely 30 -
packed elastic diskg21].

The appearance at, of a nonzero value of the shear :
modulusG [Fig. 2(c)] identifies this transition as a macro- | AN ;MF%’*'
scopic rigidity transitionG is obtained by imposing a small "%”*%'Q’Mfmwwﬁf" Wy
homogeneous shear step strain of a magnituaied measur- A
ing the resulting shear stress on the wally(G=o/€ is 2
independent of for e<10 4, here we use=10"°). The
procedure follows that outlined in R€R20]. Physically, the
shear modulus, which is a material property, should depencg ~* [
on average number of elastic contacts per disk, Ge:Z
(solid curve$, yet not on the amount of compression on
these contacts, which is imposed by the boundary strain. Ir
fact we find thatGoec(Z—2Z.) o (v—1v.)“, consistent with an
expected second order transition of the elastic consfagis Y

A similar transition at the onset of rigidity percolation
was predicted theoreticallj23] and numerically[24], in
centrgl—force network models. Th.e.f,e models predict that thSination number in boXZ and (b) shear stresses measured on
der_15|ty O_f the system-spann_lr_lg ”g'd (_:IUS@E‘“ un_dergoes_ wall, plotted against strain, for four CVBC 224 systems with
a d|§coptlny0us jump at a critical r|g|d|t)_/ percolatlon dens'tydifferentvvalues, Withu=0.5, sheared at=10"3. The time series
Pc. indicating a first-order phase transition of the fofm {5 the simulation withy= 1.=0.80 shows that the system oscil-

=at b(p— pc)_a- In our simulations, the average coordina- ates between solidliker> v.) and gaslike {<v.) values.
tion numberZ is the order parameter for this first-order tran-

sition. Meanwhile the elastic constants, describing the Me o new grain arrangement. This behavior leads to a stick-

nglip stress time seried-ig. 3). Long clusters of these grains
in contact form system-spanning “stress chains” that trans-
mit forces from the boundaries into the inter{as in Fig. 1
(t1)]. The stress fluctuation power spectBiw) for v
lll. SHEAR OF GRANULAR PACKINGS > 1o 5~0.80 varies asw”, where p~—2, as in Fig. 4a),

A. Constant volume boundary condition indicating long-time correlatiori@s observed in Fig.(8) for

N 2.0

FIG. 3. Representative portions of time seriegafmean coor-

zero at the transition, with a fornmp(p.)¢ characteristic of
a second-order transition.

To investigate the manifestation of the transition and its
effects on the dynamic behavior of grains we conducted a set
of simulations in which the 2424 configurations were
sheared in couette flow. Here we show results of simulations
with «=0.5. (Nonfrictional grains and other values of fric-
tion showed similar behavior except the transition occured at
the valuev,,, identified by the static simulations and are thus
not presented.The upper wall was translated horizontally at
a constant velocity(=10 3v,) while | was kept constant,
maintaining CVBCs. We observe different behavior as a
function of the solid fraction: In configurations withr
<v05~0.80, momentum was transferred from the wall to
interior grains mostly via short-lived collisions, resulting in
spiky fluctuations in the time series of stress measured on the
wall o and the mean coordination number in bBoxFig. 3). ‘ | ’
Stresses are transmitted only within local clusfasin Fig. 3 2 0 ~ o 10% 2x104
1 (t2)]. The power spectr&(w) of the stress fluctuations l0g,o(w) Atrt,
time serieso(t) approaches white noise, demonstrating the
uncorrelated nature of stress transfdfig. 4(@) for v
=0.74,0.78. Also there are no apparent temporal correla-
tions in a(.t), as seen in thg auto-correlation functiGAt), 11=0.5, sheared at=10"3. S(w)~ ", where for dense systems
whereAt is the tlme_-IaQFlg_. 4b)]. ) ) ) n~—2, and for loosely packetw=0.74, 0.78 systemsz—0. (b)

For dense packings, with>wvcos, grains interact via Temporal autocorrelation€(At) of the stress time series(t),
long-lasting contacts. Global motion is characterized byshowing long-time correlations in the dense systems. The charac-
elastic-plastic cycles: clusters of grains in contact accumulatgristic scales imply correlations for shear strains of 1-10 grain
recoverable elastic strain, but when stresses become t@fameters(corresponding to time lags aft~10°—10%,, respec-

great, grains suddenly rearrange to relieve the stress. Contitively). The curves for the two loosely packed systems overlap, with
ued shearing then begins accumulation of elastic strain oG(At)~0.

0.5

0.0

FIG. 4. (a) Power spectré&5(w) from the time series of shear
stress measured on wali(t), plotted as function of frequency,
for four CVBC 24x24 systems with differentv values, with
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FIG. 5. Temporally averaged shear stresses measured on wall as F|G. 6. Solid fraction versus time, for 3 different packings ini-
function of shearing velocities of the upper wall, for four CVBC tiated with 3 different solid fractionsi{=0.75,0.80,0.83), repre-
24x24 systems with different values, withu=0.5. A different  senting undercompacted, stable, and overcompacted packings re-
functional dependence on velocity is measured above and below thgyectively. The systems were sheared at10 3v,, and confined
phase transition. by Ne=10"%c, under CFBC. During shear the solid fraction

progresses to a steady state with fluctuations around the fasan

seen within the box independent of the initial porosity. The ini-
vr=0.82,0.86 and in agreement with experimental resultstially over-compacted packingv(=0.83) briefly overshoots the
[25] conducted in densely packed systems. Most interestingteady-state value due to inertial effects during relaxation of elastic
is the behavior at the transition point: Wher v, the sys-  stored energy.
tem oscillates between a solidlike “jammed” stdteig. 1
(t1)] and a gaslike behavidFigure 1 ¢2)]: The values of
Z, o, andN (Fig. 3) fluctuate between values characteristic of
the two phases. Although we discuss here average values
variables, in the low-density regime most of the shear strai
was concentrated in a boundary layer, in which the densit
was markedly less than the system average.iFew, the

density is irrelevant but the solid fraction within the shear
f;md approaches the critical val(@7]. Although the exis-
ence of a critical density is known, it's origin has not been
nderstood. Here we investigate this criticality, by perform-
ng simulations with a constant applied confining normal
density and shear strain had much less spatial variability. stressN, on the r|g|q boundarieCFBC), while sheanng Fhe
The relation between stress and strain rate is anothef’Pe’ wall at_velocnyv. Under t_hese b(_)undary conditions,
property that changes across the phase boundary. Figurei/%r?ggltéaﬁ with CVBC, the solid fraction becomes a free

shows results from simulations where the same grain con- The simulation svstems expanded or contracted durin
figuration was sheared at different strain rates, with the top imutat y xp uring

wall velocity varying between 10 to 10 ! of the acoustic shea}r, depenqling on the initia}l solid fraction, and the
wave speed. Whem< v, time-averaged shear stregand applied confining streshl,, to finally reach a steady. state
normal stress, not shown heren the wall is proportional to wherev, o, andZ fluctuate around constant values. Figure 6

v2, as expected from theofyt] and experiment&7] for the shows typical evquFion_of the systems solid_fraction as it
“g:aslike” granular state. Whenv>», measured average approaches and maintains a st.eady-s.tate during shear.. Aver-
stresses are nearly independent of strain rate, as expected € \;?ll;es 0; stetqdy—stfal:le solgj fra;:tm(@ arle t_plotted_tlﬂ
elastic-plastic materials and as seen in experiments i 'EO SaFas unpdlon ONe ?n Vf’. for simu al|ortls Wi
densely packed granular systef®6]. For v=v, stress- - or a wide range of confining normal stresbks

strain-rate curves resemble those of plastic materials, sinc(é"?mge widens W|th_decreas_|ng veloonsfyste_ms attain the
Jjtical volume fraction for frictional grains, i.e(w)~veos

Eg?a\_jité?sses in jammed states dominate the time averagg: 0.805. For frictionless disks, simulations converge(eh
~v=0.835, in a similar manner. Thoudh) is fairly con-
stant withN, in the “critical regime,” the mean steady-state
coordination numbetZ) increases wittN, [Fig. 7(b)].

In this section we demonstrate the role of the critical solid In the CFBC simulations the system does not oscillate
fraction when the system is allowed to evolve to it's own between gas and solid phases as in CVBC, since “jamming”
preferred density. Soil mechanists have long known of apisodes may be avoided by slight dilatigaroducing fluc-
“critical density.” If a granular aggregate is over- tuations around the mean porosity and heighistead, the
consolidated and sheared under CFBC, it will deform whilecritical state in CFBC is marked by spatial coexistence of the
shearing and expand to this “critical density.” If it is ini- two phases. However, unlike simulations which include
tially underconsolidated it will compact while shearing until gravity, where the phases separate into different regions of
it reaches the same critical density. In systems where ththe domain[14], here they are intermingled: stress-bearing
deformation is concentrated into shear bands, the overaghains separating “islands” of unstressed gas. In those sys-

B. Constant force boundary condition
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e 0.80 ) [e) boundary; FIG. 7. (a) Time averaged steady-state solid
e ) fraction (v) for 24x24 systems, withu=0.5,
078 | T E sheared at two different velocities, under
@ 3 CFBC, plotted against the confining normal stress
o Ov=10"v, - .
076 | § ov=10", | N, used for boundary condition. Error bars depict
’ standard deviation from steadystafle). Instanta-
neous grain configurations and stresses for three

of thev=10"% runs in(a). The confining stress
used for each is written above the frames, and the
temporally averaged coordination number is writ-
ten below. Although the three runs have nearly
identical solid fractiongsee (a)], (Z2) increases
dramatically, also observed visually as increasing
density of stress chains.

tems having v)=~ v, system-spanning stress chains begin toenough to counterbalance the confining normal stiéss
form. With increasingN., the number and size of gas is- With increasingN,, increasingly large flux of energy is
lands decreases, and the connectivity of chains increases, andeded to sustain the gaslike state. A loosely packed system
thus (2) increasedFig. 7(b)]. A measure of the amount of subjected to a finite normal stress and sheared at small
grains participating in chains is plotted in Fig. 8, where theenough velocities will thus tend to compact and approach
fraction of grains with a coordination number greater than 2from below. On the other hand systems with v are char-
i.e., grains that are part of a stress-supporting chain, is plotacterized by finite deformatiofi™>1%) of grains, which re-
ted against the applied normal load. For systems with a derguire extremely high stresses for stiff natural granular mate-
sity nearv, this fraction increases slowly over a wide rangerial. Thus v, is the rigid limit, where stresses are
of No. The number of stress-supporting grains increaseaccommodated by efficient load bearing structures which
sharply at higher normal stresses, coinciding with a transitioheave the bulk of the material free to flow. The presence of
in the solid fraction tov> v, . The fact that stress in granular gas islands allows stress chains to form, evolve and die more
aggregates may be supported in a bimgdab-phase¢fash-  easily, without jamming the system for long periods.
ion was recently quantified in modeling of “quasistatic” de-
formation of granular systems, using CFBZ3]. ( . . , .
Deviations of the solid fraction from its phase boundary
value occur in two case$l) At high normal stresses, “so-
lidification” occurs: () increases above., islands virtually
vanish and chains become highly connecitid=10"2 in
Fig. 7(a), and in Fig. 8. (2) When the ratio of inertial to
normal forces is highthigher velocities and lower normal
stresses the velocity fluctuations of grains produce a
“granular pressure’[4] which may cause decompaction, and
(v) becomes less tham,: Fig. 7(@), v=10 3 and N,
<10 °. In this case islands grow to divide stress chains at a
region close to the shearing wall, resulting in “fluidization”
near the wall. We also observed the gas to solid transition in
the power spectr&(w) obtained from the stress fluctuations
measured on the wadt(t), whereS(w) varies asw” with » 0 L4 ' . : : :
decreasing continuously fromy~0 for No=10"' to 7~ -8 - -6 o - N -3 -2 -
o 910 (N, /0,)
—2 for Ng=10"4, Fig. 9.
Why is the transition density between gas and solid also F|G. 8. Fraction of grains with coordination number greater than
the critical density to which the system is attracted? The, i.e., grains participating in stress supporting chains, as function of
gaslike phase will only occur when granular pressure, whiclapplied normal stresd,,. Simulations use CFBC and shearing rate
results from energy input from the bounddd], is large isv=10"%v,.

03 r [ J b

02t ° -

0.1 | L4 .

fraction of grains with coordination>2
°
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coordination yet a continuous increase in shear modulus in
our simulationgFigs. 2a) and Zc)].

At the transition, we observe that the two phases coexist
in spaceFig. 7(b)] and/or time(Fig. 3. The phase boundary
is attractive, and corresponds to the *“critical density”
known (but previously not understopdn soil mechanics:
Sheared aggregates tend to this critical volume fraction un-
der a wide range of normal loads. Experimentally, a coexist-
ence of gas and solid regimes has been observed in shearing
granular systemglQ], and oscillations between “jamming”
and “flowing” states occur spontaneously in a variety of
systems, from hoppers to natural and experimental land
slides [29], suggesting proximity of these systems to the
phase boundary. An attracting phase boundary may also ex-
plain “fragile materials,” a term recently used to describe
‘jammed’ states which may be unjammed by small fluctua-
tions[30].

We used normal stresses ranging between?2a0 ’,
which using a characteristic Young’s modulus for Earth ma-
terials (e.g., roch, translates tdN,=3—3x 10° KPa, (corre-

same grain configuration, but sheared while using different Value§ponding for soils to burial depth of 0.1 m—10 krBased on

of applied normal stresdl,. All systems sheared at velocity
=10"* under CFBC, withu=0.5.

IV. CONCLUSION

To summarize, we identified a rigidity transition. The

solid fraction at the transition in our experiments varied from

v.=0.80-0.84, with the lower number representing fric-
tional grains. The critical solid-fraction is a phase-boundar

between gas and elastic-plastic solid regimes of behavio

The characteristics we observe suggest that the granular
gidity transition is a first-order transition in two dimensions.

this, we suggest that many natural granular deformation pro-
cesses, including the deformation that occurs in gouge filled
faults during earthquakes, will occur at a local solid fraction
which constitutes a phase boundary, and neither gas nor elas-
toplastic descriptions will fully capture these systems’ be-
havior. However, such criticality in natural systems is easily
missed, since spatial and temporal averages of stresses tend
to be dominated by stress chains, and thus have the mark of
olid deformation. It is clear that much more theoretical and
I;axperimental work needs to be done, including investigating

Iri1_1uch larger systems, and examining the critical state more

closely.

However the elastic constants, as in central-force network

percolation models, have second order characteri®igh
Recent work with bond-diluted latticd24] has shown that
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